Part Number Hot Search : 
FR5505 DG401DVZ SA200 7N60C3 5X5R1 D74ALV CY7C4 C3890
Product Description
Full Text Search
 

To Download HCPL-3101 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Power MOSFET/IGBT Gate Drive Optocouplers Technical Data
HCPL-3100 HCPL-3101
Features
* High Output Current IO1 and IO2 (0.4 A Peak, 0.1 A Continuous) * 1.5 kV/s Minimum Common Mode Rejection (CMR) at VCM = 600 V * Wide Operating VCC Range (15 to 30 Volts) * High Speed 1 s Typical Propagation Delay (HCPL-3100) 0.3 s Typical Propagation Delay (HCPL-3101) * Recognized under UL 1577 for Dielectric Withstand Proof Test Voltages of 5000 Vac, 1 Minute
Description
The HCPL-3100/3101 consists of an LED* optically coupled to an integrated circuit with a power output stage. These optocouplers are suited for driving power MOSFETs and IGBTs used in motor control inverter applications. The high operating voltage range of the output stage provides the voltage drives required by gate controlled devices. The voltage and current supplied by these optocouplers allow for direct interfacing to the power device without the need for an intermediate amplifier stage.
The HCPL-3100 switches a 3000 pF load in 2 s and the HCPL3101, using a higher speed LED, switches a 3000 pF load in 0.5 s. With a CMR rating of 5 kV/s typical these optocouplers readily reject transients found in inverter applications. The LED controls the state of the output stage. Transistor Q2 in the output stage is on with the LED off, allowing the gate of the power device to be held low. Turning on the LED turns off transistor Q2 and switches on transistor Q1 in the output stage which provides current and voltage to drive the gate of the power device.
HCPL-3101
Functional Diagram Applications
* Isolated MOSFET/IGBT Gate Drive * AC and DC Motor Drives * General Purpose Industrial Inverters * Uninterruptable Power Supply
ANODE 1 HCPL-3100 8 V CC 1 8 VCC
CATHODE
2
Q2
7
GND
ANODE
2
Q2
7
GND
3
Q1
6
V O2
CATHODE
3
Q1
6
VO2
4
5
V O1
4
5
VO1
TRUTH TABLE LED OUTPUT ON HIGH LEVEL OFF LOW LEVEL
Q1 ON OFF
Q2 OFF ON
THE USE OF A 0.1 F BYPASS CAPACITOR CONNECTED BETWEEN PINS 8 AND 7 IS RECOMMENDED. ALSO CURRENT LIMITING RESISTOR IS RECOMMENDED (SEE FIGURE 1, AND NOTE 2 AND NOTE 7).
*HCPL-3100 LED contains Silicon-doped GaAs and HCPL-3101 LED contains AlGaAs.
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.
This Material Copyrighted By Its Respective Manufacturer
2
Schematic
HCPL-3100 I CC 8 1 ANODE + Q2 IO2 Q1 IO1 5 6 7 VCC GND
2 ANODE + IF Q2 IO2 Q1 IO1 5 6 HCPL-3101 I CC 8 7 VCC GND
IF
VO2
CATHODE 3
V O2
CATHODE 2
VO1
V O1
THE USE OF A 0.1 F BYPASS CAPACITOR CONNECTED BETWEEN PINS 8 AND 7 IS RECOMMENDED. ALSO CURRENT LIMITING RESISTOR IS RECOMMENDED (SEE FIGURE 1, AND NOTE 2 AND NOTE 7).
Outline Drawing
0.65 (0.026) 1.05 (0.040) 0.90 (0.035) 1.50 (0.059) 0 13
8 TYPE NUMBER DATE CODE
7
6
5 0.16 (0.006) 0.36 (0.014) 6.00 (0.236) 7.00 (0.276) 7.32 (0.288) 7.92 (0.312) 0 13
A XXXX YYWW
1
2
3
4
HCPL-3100 ANODE 9.16 (0.361) 10.16 (0.400) 0.50 (0.020) TYP CATHODE 3.00 (0.118) 4.00 (0.157) 2
Q2
HCPL-3101 8 V CC 1 8 VCC
1
7
GND
ANODE
2
Q2
7
GND
3
Q1
6
V O2
CATHODE
3
Q1
6
V O2
2.90 (0.114) 3.90 (0.154)
2.55 (0.100) 3.55 (0.140)
4
5
V O1
4
5
V O1
0.40 (0.016) 0.60 (0.024) 2.29 (0.090) 2.79 (0.110)
Demonstrated ESD Performance
Human Body Model: MIL-STD883 Method 3015.7: Class 2 Machine Model: EIAJ IC-1211988 (1988.3.28 Version 2), Test Method 20, Condition C: 1200 V
Regulatory Information
The HCPL-3100/3101 has been approved by the following organization: UL Recognized under UL 1577, Component Recognition Program, File E55361.
This Material Copyrighted By Its Respective Manufacturer
3
Insulation and Safety Related Specifications
Parameter Min. External Air Gap (External Clearance) Min. External Tracking Path (External Creepage) Min. Internal Plastic Gap (Internal Clearance) Symbol Value Units L(IO1) L(IO2) 6.0 6.0 mm mm Conditions Shortest distance measured through air, between two conductive leads, input to output Shortest distance path measured along outside surface of optocoupler body between input and output leads Through insulation distance conductor to conductor inside the optocoupler cavity
0.15
mm
Absolute Maximum Ratings
Parameter Storage Temperature Operating Temperature Input Continuous Current Reverse Voltage Supply Voltage Output 1 Continuous Current Peak Current Voltage Output 2 Continuous Current Peak Current Output Power Dissipation Total Power Dissipation Lead Solder Temperature PO PT VO1 IO2 Symbol TS TA IF HCPL-3100 HCPL-3101 VR VCC IO1 Device Min. -55 -25 Max. 125 80 25 20 6 35 0.1 0.4 35 0.1 0.4 500 550 Unit C C mA mA V V A A V A A mW mW Pulse Width < 0.15 s, Duty cycle = 1% 12 12 1 1 1 1 Pulse Width < 0.15 s, Duty cycle = 1% 1 1 TA = 25C 11 11 1 1 Conditions Fig. Note
260C for 10 s, 1.0 mm below seating plane
This Material Copyrighted By Its Respective Manufacturer
4
Recommended Operating Conditions
Parameter Power Supply Voltage Symbol VCC IF(ON) IF(OFF) TA HCPL-3100 HCPL-3101 Input Current (OFF) HCPL-3100 HCPL-3101 Operating Temperature Device Min. 15 15 Input Current (ON) 12** 8** -25 Max. 30* 24 24 16 0.6 0.2 80 Units V V mA mA mA mA C
*For TA = -10C to 60C. **The initial switching threshold is 10 mA or less for the HCPL-3100 and 5 mA or less for the HCPL-3101.
Recommended Protection for Output Transistors
During switching transitions, the output transistors Q1 and Q2 of the HCPL-3100/3101 can conduct large amounts of current. Figure 1 describes a recommended circuit design showing a current
limiting resistor R 2 which is necessary in order to prevent damage to the output transistors Q1 and Q2. (See Note 7.) A bypass capacitor C1 is also recommended to reduce power supply noise.
+5 V
HCPL-3100/1 8 R3 7 ANODE Q2 6 TTL OR LSTTL TOTEM POLE OUTPUT GATE R2 CATHODE Q1 5 12V 12V + HVDC C1
CONTROL INPUT
IGBT (OR MOSFET)
R 2 = 25 - 100 R 3 = 180 (HCPL-3100) 240 (HCPL-3101) BYPASS CAPACITOR C 1 = 0.1 F
Figure 1. Recommended Output Transistor Protection and Typical Application Circuit.
This Material Copyrighted By Its Respective Manufacturer
5
Electrical Specifications
Over recommended temperature (TA = -25C to +80C) unless otherwise specified.
Parameter Input Forward Voltage Sym. VF Device HCPL-3100 Min. 0.6 HCPL-3101 1.2 Input Reverse Current Input Capacitance Output 1 Low Level Voltage Leakage Current Output 2 High Level Voltage Low Level Voltage Leakage Current Supply Current High Level IR HCPL-3100 HCPL-3101 CIN VO1L HCPL-3100 HCPL-3101 IO1L VO2H HCPL-3100 HCPL-3101 VO2L 1.2 2.0 V 18 21 500 A V 30 0.2 250 0.4 pF V Typ. 1.2 0.9 1.6 1.5 Max. Units 1.4 1.75 10 V V V V A Test Conditions IF = 20 mA IF = 0.2 mA IF = 10 mA IF = 0.2 mA VR = 4 V VF = 5 V VF = 0 V f = 1 kHz, , TA = 25C IF = 10 mA VCC1 = 12 V, IO1 = 0.1 A, IF = 5 mA VCC2 = -12 V VCC = VO1 = 35 V, V O2 = 0 V IF = 0 mA, TA = 25C IF = 10 mA VCC = 24 V, VO1 = 24 V, IF = 5 mA IO2 = -0.1 A 2, 17, 18 5 3, 19, 20 2 2 TA = 25C 14 TA = 25C Fig. 13 Note
VCC = VO1 = 24 V, IO2 = 0.1 A, 4, 21, IF = 0 mA 22 IF = 10 mA VCC = 35 V, VO2 = 35 V, IF = 5 mA TA = 25C TA = 25C VO1 = 24 V 6
IO2L
HCPL-3100 HCPL-3101
-
-
500
A
ICCH
HCPL-3100
-
6 6 8 4.0 1.5 -
10 14 10 14 13 17 7.0 10.0 3.0 5.0
mA mA mA mA mA mA mA mA mA mA
7, 23
2
VCC = 24 V, I F = 10 mA TA = 25C VO1 = 24 V
HCPL-3101
-
VCC = 24 V, I F = 5 mA TA = 25C VO1 = 24 V 7, 24
Low Level Low to High Threshold Input
ICCL
-
VCC = 24 V, I F = 0 mA TA = 25C VCC = VO1 = 24 V TA = 25C VCC = VO1 = 24 V 8, 15, 16 2, 3
IFLH
HCPL-3100
1.0 0.6
HCPL-3101
0.3 0.2
This Material Copyrighted By Its Respective Manufacturer
6
Switching Specifications (TA = 25C)
Parameter Propagation Delay Time to High Output Level Propagation Delay Time to Low Output Level Rise Time Sym. tPLH Device HCPL-3100 HCPL-3101 tPHL HCPL-3100 HCPL-3101 tr HCPL-3100 HCPL-3101 Fall Time tf HCPL-3100 HCPL-3101 Output High Level Common Mode Transient Immunity Output Low Level Common Mode Transient Immunity |CMH| HCPL-3100 1500 HCPL-3101 5000 V/s 0.2 0.5 s Min. Typ. 1 0.3 1 0.3 0.2 Max. Units 2 0.5 2 0.5 0.5 s s s s s Test Conditions IF = 10 mA IF = 5 mA IF = 10 mA IF = 5 mA IF = 10 mA IF = 5 mA IF = 10 mA IF = 5 mA IF = 10 mA IF = 5mA VCM = 600 V (peak), VCC = 24 V VO1 = 24 V V02H = V02L = 2.0 V 10 2 VCC = 24 V, VO1 = 24 V, RG = 47 , CG = 3000 pF Fig. 9, 25, 26, 27 Note 2, 6
|CML|
1500
5000
-
V/s
IF = 0 mA
Packaging Characteristics
Parameter Input-Output Momentary Withstand Voltage* Resistance (Input-Output) Capacitance (Input-Output) Sym. VISO RI-O CI-O Min. 5000 5x1010 - 1011 1.2 - - Typ. Max. Units V rms pF Test Conditions RH = 40% to 60% t = 1 min, TA = 25C VI-O = 500 V, TA = 25C RH = 40% to 60% f = 1 MHz Fig. Note 4, 5 4 4
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety specification, or Agilent Application Note 1074, "Optocoupler Input-Output Endurance Voltage."
Notes: 1. Derate absolute maximum ratings with ambient temperatures as shown in Figures 11 and 12. 2. A bypass capacitor of 0.01 F or more is needed near the device between VCC and GND when measuring output and transfer characteristics. 3. IFLH represents the forward current when the output goes from low to high. 4. Device considered a two terminal device; pins 1-4 are shorted together and pins 5-8 are shorted together. 5. For devices with minimum VISO specified at 5000 V rms, in accordance with UL 1577, each optocoupler is proof-tested by applying an insulation test voltage 6000 V rms for one second (leakage current detection limit, II-O 200 A). 6. The tPLH and tPHL propagation delays are measured from the 50% level of the input pulse to the 50% level of the output pulse. 7. R2 limits the Q1 and Q2 peak currents. For more applications and circuit design information see Application Note "Power Transistor Gate/Base Drive Optocouplers."
This Material Copyrighted By Its Respective Manufacturer
7
HCPL-3100 1 IF 2 GND
Q2
HCPL-3100
VCC
8 VCC1 VCC2 6 + - I O1 + VO1L
IF
1
V CC
8
V CC + -
7
+ -
2
GND
Q2
7
- VO2H +
I O2
3
Q1
3
Q1
6 V O2 5 V O1
V O2 5 V O1
4
4
Figure 2. Test Circuit for Low Level Output Voltage VO1L.
Figure 3. Test Circuit for High Level Output Voltage VO2H.
HCPL-3100 1 IF 2 GND
Q2
HCPL-3100
VCC 8 V CC + 7 - VO2L + I O2
1 IF 2
VCC
8 + -
GND
Q2
7
VCC
3
Q1
6 VO2 5 VO1
3
Q1
6 V O2 5 V O1 I O1L
4
4
Figure 4. Test Circuit for Low Level Output Voltage VO2L.
Figure 5. Test Circuit for Leakage Current IO1L.
HCPL-3100 1 IF 2 GND
Q2
HCPL-3100 VCC 8 + 7 I O2L IF V CC 2 GND
Q2
1
VCC
I CC 8 + 7 V CC
3
Q1
6 VO2 5 VO1
3
Q1
6 V O2 5 V O1
4
4
Figure 6. Test Circuit for Leakage Current IO2L.
Figure 7. Test Circuit for ICCH and ICCL.
HCPL-3100 IF SWEEP 1 VCC 8 V CC + 7 - V O2 +
2
GND
Q2
3
Q1
6 V O2 5 V O1
4
Figure 8. Test Circuit for Threshold Input Current IFLH.
This Material Copyrighted By Its Respective Manufacturer
8
HCPL-3100 IF
tr = tf = 0.01s V IN PULSE WIDTH 5 s DUTY RATIO 50%
HCPL-3100
V CC 8 V CC + 7 - V O2 + RG
1
IF
1
V CC
8 V CC + 7 - V O2 +
2
GND
Q2
SW
CG
2
GND
Q2
A
B 3
3
Q1
6 VO2 5 VO1
6
Q1
V O2 5 V O1
4
4 + V CM
50%
-
V CM V CM
V IN WAVE FORM t PLH t PLH
GND
90% 50% V OUT WAVE FORM 10%
CM H , V O2 SW AT A, IF = 10 mA, HCPL-3100 SW AT A, IF = 5 mA, HCPL-3101 V O2H
V O2H
tr
tf
CM L , V O2 SW AT B, I F = 0 mA
V O2L
V O2L GND
Figure 9. Test Circuit for tPLH, tPHL, tr, and tf.
Figure 10. Test Circuit for CMH and CML.
60
POWER DISSIPATION Po , P T (mW)
600 TOTAL POWER DISSIPATION IC AND LED OUTPUT POWER DISSIPATION IC
500 200
FORWARD CURRENT IF (mA)
LED FORWARD CURRENT I F (mA)
50
500
TA= 75C 50C 25C 0C
100 50 20 10 5 2 1
40
400
30
HCPL-3100
300
-20C
20 10
200 100
HCPL-3101
0 -25
0 25 50 75 100 80 AMBIENT TEMPERATURE TA(C)
125
0 -25
0 25 50 75 100 80 AMBIENT TEMPERATURE TA(C)
125
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
FORWARD VOLTAGE VF (V)
Figure 11. LED Forward Current vs. Ambient Temperature.
Figure 12. Maximum Power Dissipation vs. Ambient Temperature.
Figure 13. Typical Forward Current vs. Forward Voltage, HCPL-3100.
This Material Copyrighted By Its Respective Manufacturer
9
NORMALIZED THRESHOLD INPUT CURRENT
TA = 25C 1.1
NORMALIZED THRESHOLD INPUT CURRENT
100 70C
FORWARD CURRENT IF (mA)
1.2
1.6 VCC = 24 V 1.4
10
50C 25C TA= 0C
1.0
1.2
1
0.9
1.0
HCPL-3100
0.1
0.8
0.8
HCPL-3101
0.01 1.0 1.2 1.4 1.6 1.8 2.0 2.2 FORWARD VOLTAGE V F (V)
0.7 15 18 21 24 27 30 SUPPLY VOLTAGE VCC (V)
0.6 -25
0
25
50
75
100
AMBIENT TEMPERATURE T A (C)
Figure 14. Typical Forward Current vs. Forward Voltage, HCPL-3101.
Figure 15. Normalized Low to High Threshold Input Current vs. Supply Voltage.
Figure 16. Normalized Low to High Threshold Input Current vs. Ambient Temperature.
0.4
LOW LEVEL OUTPUT 1 VOLTAGE V 01L (V) LOW LEVEL OUTPUT 1 VOLTAGE V01L (V)
HIGH LEVEL OUTPUT 2 VOLTAGE VO2H (V)
0.5 VCC1 = 12 V VCC2 = -12 V 0.4 I F = 5 mA, HCPL-3101 I F = 10 mA, HCPL 3100 0.3
30 TA= 25C I F = 5 mA, HCPL-3101 I F = 10 mA, HCPL-3100
0.2 0.1 0.05
27
24
21
0.02 0.01 0.005 0.01 0.02
VCC1 = 12 V VCC2 = -12 V TA = 25C I F = 5 mA, HCPL-3101 I F = 10 mA, HCPL 3100 0.05 0.1 0.2 0.5 1.0
0.2 I 01 = 0.1 A 0.1
18 15
0 -25
12 15 18 21 24 27 30 33 SUPPLY VOLTAGE V CC (V)
0
25
50
75
100
OUTPUT 1 CURRENT I 01 (A)
AMBIENT TEMPERATURE
Figure 17. Typical Low Level Output 1 Voltage vs. Output 1 Current.
Figure 18. Typical Low Level Output 1 Voltage vs. Ambient Temperature.
Figure 19. Typical High Level Output 2 Voltage vs. Supply Voltage.
24
HIGH LEVEL OUTPUT 2 VOLTAGE VO2H (V)
LOW LEVEL OUTPUT 2 VOLTAGE V02L (V)
4 VCC = 6 V 2 1 0.5 TA = 25C I F = 0 mA
LOW LEVEL OUTPUT 2 VOLTAGE V02L (V)
1.5 VCC = 24 V I F = 0 mA 1.4
23 I O2 = 0 A 22
1.3
21 I O2 = -0.1 A 20 19 V CC = 24 V I F = 5 mA, HCPL-3101 I F = 10 mA, HCPL-3100 0 25 50 75 100
0.2 0.1 0.05 0.01 0.02 0.05 0.1 0.2 0.5 1.0
1.2 I 02 = 0.1 A 1.1
18 -25
1.0 -25 0 25 50 75 100 AMBIENT TEMPERATURE T A (C)
AMBIENT TEMPERATURE TA (C)
OUTPUT 2 CURRENT I O2 (A)
Figure 20. Typical High Level Output 2 Voltage vs. Ambient Temperature.
Figure 21. Typical Low Level Output 2 Voltage vs. Output 2 Current.
Figure 22. Typical Low Level Output 2 Voltage vs. Ambient Temperature.
This Material Copyrighted By Its Respective Manufacturer
10
HIGH LEVEL SUPPLY CURRENT I CCH (mA)
LOW LEVEL SUPPLY CURRENT I CCL(mA)
I F = 10 mA, HCPL-3100 I F = 5 mA, HCPL-3101 10
PROPAGATION DELAY TIME t PHL , t PLH (s)
12
14 I F = 0 mA 12
2.5 VCC = 24 V 2.0 R G = 47 CG = 3000 pF 1.5
8 TA = -25C 6 25C 80C 4
10 TA = -25C 8 25C 80C 6
tPLH TA = 75C t PHL
1.0
25C -25C
0.5 TA = 75C 0 5 10 15 25C 20 -25C 25
2 15 18 21 24 27 30 SUPPLY VOLTAGE VCC (V)
4 15 18 21 24 27 30 SUPPLY VOLTAGE VCC (V)
0
FORWARD CURRENT I F (mA)
Figure 23. Typical High Level Supply Current vs. Supply Voltage.
Figure 24. Typical Low Level Supply Current vs. Supply Voltage.
Figure 25. Typical Propagation Delay Time vs. Forward Current, HCPL3100.
PROPAGATION DELAY TIME t PHL , t PLH (s)
VCC = 24 V R G = 47 0.8 C G = 3000 pF t PHL 0.6 TA = 75C
PROPAGATION DELAY TIME t PHL , t PLH (s)
1.0
1.0 t PLH 0.8 t PHL HCPL-3100 0.6 t PLH t PHL HCPL-3101 0.2 VCC = 24 V R G = 47 C G = 3000 pF I F = 5 mA, HCPL-3101 I F = 10 mA, HCPL-3100 25 50 75 100
0.4
25C -25C
0.4
0.2 t PLH 0 0 TA = 75C 5 10 25C 15 -25C 20 25
0 -25
0
FORWARD CURRENT I F (mA)
AMBIENT TEMPERATURE TA (C)
Figure 26. Typical Propagation Delay Time vs. Forward Current, HCPL3101.
Figure 27. Typical Propagation Delay Time vs. Ambient Temperature.
This Material Copyrighted By Its Respective Manufacturer
11
This Material Copyrighted By Its Respective Manufacturer
www.semiconductor.agilent.com Data subject to change. Copyright (c) 1999 Agilent Technologies Obsoletes 5091-5657E 5965-3583E (11/99)
This Material Copyrighted By Its Respective Manufacturer


▲Up To Search▲   

 
Price & Availability of HCPL-3101

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X